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1 Introduction

When we quotient C2 by a finite subgroup G of SL(2,C), and we take a minimal resolution Y of the
kleinian singularity C2/G, then Y is a crepant resolution and the exceptional locus consists of a bunch
of curves, whose dual graph is a Dynkin diagram of the kind An, Dn, E6, E7, E8. In the eighties,
McKay noticed that the Dynkin diagrams arising from resolutions of kleinian singularities are in tight
connection with the representations of G. In the first part we will explain the McKay correspondence
and its key generalization by means of K-theory, due to Gonzalez-Sprinberg and Verdier. The latter
point of view opens the way to the modern derived McKay correspondence, due to Bridgeland-King-
Reid. We will then see some applications of the BKR theorem to the geometry of Hilbert schemes of
points, due to Haiman, and some other consequences related to the cohomology of tautological bundles.
In all the exposition, we will always work with algebraic varieties over C; moreover, we will always
suppose that all singular varieties are normal.

2 Rational double points

The objects of interest in this section are certain classes of singularities of surfaces and their resolutions.
If X is an algebraic variety, we denote with Xreg and with Xsing the open set of regular points and the
closed set of singular points, respectively. We recall the definition of resolution of singularities.

Definition 2.1. Let X an algebraic variety. A resolution of singularities of X is a smooth variety
Y , equipped with a proper birational morphism µ : Y - X, such that µ induces an isomorphism
between Y \ µ−1(Xsing) and Xreg. The set Exc(µ) := µ−1(Xsing), where µ fails to be an isomorphism,
is called the exceptional locus.

We say that an algebraic variety X has rational singularities if there is a resolution µ : Y - X

such that Rµ∗OX ' OY , or equivalently, such that µ∗OY ' OX , and the higher direct images of the
structural sheaf of Y vanish: Riµ∗OX ' 0. We are interested in (germs of) isolated singularities of
surfaces, that is, we consider a small neighbourhood of a surface X around the only singular point x.
We denote the germ with (X,x). For such a singularity consider the maximal ideal mx in the local ring
OX,x: the Zariski cotangent space of X at x is then mx/m

2
x. For an isolated singularity (X,x), being

rational can be rephrased in terms of complex analytic geometry as follows:

Definition 2.2. [27], [6]. A germ of n-dimensional isolated singularity (X,x) is rational if and only if
for all regular holomorphic n-form σ ∈ H0(X \{0},ΩnX) on X \{0}, the pull-back µ∗σ ∈ H0(Y \E,ΩnY )
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extends to a regular holomorphic form on the whole Y . This is equivalent to saying that any holomorphic
n-form σ defined in a deleted neighbourhood U \ {x} of x is square integrable around x, that is∫

U ′
σ ∧ σ̄ < +∞

for U ′ sufficiently small relatively compact.

Germs of isolated rational surface singularities have been extensively studied by Artin in [1]: among
other results, he proves such an isolated rational surface singularity has multiplicity exactly dim mx/m

2
x−

1. Since one can always embed any germ (X,x) in its tangent space at the point x, one has consequently
that a rational double point is always embeddable in C3. Hence the isolated surface singularities that
we are interested in are all of the form (X,x) = (V (f), 0), where f ∈ C[x, y, z] is a polynomial in 3
variables, with ∇f(0) = 0.

Remark 2.3. In this case, if Y is a resolution of singularities, then the exceptional set with the reduced
structure E = µ−1(0)red is a divisor (necessarily a curve in Y ) and it is always connected (by Zariski
main theorem, since X is normal). However E can be reducible. We will write E = ∪iCi, where Ci are
the irreducible components.

Definition 2.4. LetX an n-dimensional algebraic variety. Consider the open immersion j : Xreg
⊂ - X.

Consider the sheaf ωX := j∗ΩnXreg
and suppose that it is a line bundle. A resolution of singularities

µ : Y - X is called crepant1 if µ∗ωX ' ωY , where ωY := ΩnY is the canonical line bundle of Y . For
an isolated singularity (X,x) this means that for any holomorphic n-form σ defined on a heighbourhood
of x, the form µ∗σ is a holomorphic n-form on µ−1(U) \ E which can be extended to a holomorphic
n-form to µ−1(U) without zero on µ−1(U).

Remark 2.5. We will say that the resolution µ : Y - X is minimal if it does not factorize through
another resolution µ′ : Y ′ - X. It follows that if the germ of surface singularity (X,x) is rational
and the resolution µ : Y - X is minimal, then it is crepant.

Example 2.6. Consider the polynomial f = x2 +y2−z2 (figure 1). The surface V (f) has a singularity
at the origin. The singularity is rational, as it can be seen like follows. Since df = 2xdx+2ydy−2zdz = 0
on X, the differential form on X: σ = −dx∧dy/2z = −dy∧dz/2y = dx∧dz/2y is a well defined rational
form on X; moreover it is regular and nondegenerate at every nonsingular point of X, hence it is a
volume form on X \ {0}. A resolution of X can be obtained considering the blow-up h : Bl0C3 - C3

of the origin in C3, and taking Y as the strict transform of X, that is, the Zariski closure of h−1(X\{x}).
On can easily prove that the form h∗σ, defined on Y \E, can be extended to the whole Y as a volume
form. The blow-up has indeed 3-charts; one of them (the other are analogous) has coordinates λ, µ, z,
with x = λz, y = µz, and Y is defined on this chart by λ2 + µ2 − 1 = 0. The exceptional divisor is the
circle E = Y ∩ {z = 0}. The differential form τ = −dµ∧ dz/2λ = dλ∧ dz/2µ is a rational volume form
on Y , coinciding with h∗σ on Y \ E.

Example 2.7. Consider the polynomial f = x2− y2z− z3 (figure 2). The surface V (f) has an isolated
rational singularity at the origin. In order to solve it, we need two blow-ups. After the first one, there
will be three distinct singular points in the exceptional divisor. Blowing-up the three of them at once,
we get the resolution Y . The exceptional divisor E is a union of four rational curves Ci.

Definition 2.8. If (X,x) is germ of an isolated rational surface singlarity and µ : Y - X a minimal
resolution with exceptional divisor E =

∑
i Ci, the cycle W =

∑
i riCi given by the nonreduced scheme

W := µ−1(x) is called the fundamental cycle.
1This means that there is no discrepancy between ωY and µ∗ωX
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Figure 1: Minimal resolution of the A1-singularity x2 + y2 − z2 = 0.

Figure 2: Minimal resolution of the D4-singularity x2 − y2z − z3 = 0.

Remark 2.9. If (X,x) is a germ of rational surface singularities and µ : Y - X is a minimal resolution,
we can understand completely the kind of curves Ci appearing as irreducible components of E and the
structure of their intersections [2, chapter 3, §2,3]. Indeed

• The autointersection C2
i of each curve is −2. This is equivalent to the fact that all curve are

rational, and actually isomophic to P1.

• If we draw a point for each curve Ci and a line between points if the two corresponding curve
intersect, the diagram we obtain are all and only the following Dynkin diagrams. It is clear that
isomoprhic germ singularities will generate the same diagrams, so the following is a classification
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of isomophism classes of rational double points. The matrix (Ci · Cj)ij , whose information is
equivalent to the information given by the diagrams, is called the intersection matrix.

An x2 + y2 + zn+1 c c c c c
Dn x2 + y2z + zn−1 c c cc

cll,,
E6 x2 + y3 + z4 c c c c cc
E7 x2 + y3 + yz3 c c c c c cc
E8 x2 + y3 + z5 c c c c c c cc

Remark 2.10. Rational double points have many other beautiful and interesting characterizations and
connections, not only in terms of algebraic geometry, but also of complex analysis, Lie Groups, differen-
tial topology, algebraic topology and fundamental groups, Morse theory, catastrophe theory and many
others. See for example [14] and [38].

3 Finite subgroups of SU(2)

Interesting isolated surface singularities come from quotients C2/G, with G a finite group of SL(2,C).
Any finite subgroup of SL(2,C) is conjugated to a subgroup of SU(2), the reason being that, by
averaging, one can build a G-invariant hermitian metric in C2. In this section we will say some words
on the classification of finite subgroups of SU(2).

As an immediate consequence of its definition, the group SU(2) is diffeomeorphic to the sphere S3

and hence simply connected. Moreover there is a 2 : 1 covering map π : SU(2) - SO(3), that realizes
it as the universal cover of SO(3), or, in other terms, as Spin(3).

Remark 3.1. Since the only element of order 2 in SU(2) is −1, we have that if G is a finite subgroup
fo SU(2), then, up to conjugation, G is a cyclic group of finite order, or G = π−1(G′) with G′ a finite
group of SO(3), that is, a binary polyhedral group. Indeed if |G| is odd, then G ∩ ker = {1} and hence
G ' π(G), and hence it has to be cyclic. Otherwise, if |G| is even, then, by Sylow theorem, it contains
a subgroup of order a power of 2, and hence an element of order 2, that is, it has to contain the kernel.
Hence, G = π−1π(G).

Remark 3.2. After the previous remark, to classify, up to conjugation, finite subgroups of SU(2), we
just have to classify finite subrgroups of SO(3). Let G a finite subgroup of SO(3). Let p a point of
R3, p 6= 0. Then the orbit Gp can be planar or not. If Gp is planar, then G is cyclic of order n, or a
dihedral group (of order 2n), that is, the symmetry group of a polygon with n sides. On the other hand,
if the orbit is not planar, then it is the set of vertices of a regular polyhedron, and G is its symmetry
group. Regular polyhedra, or platonic solids have been classified first by Theaetetus (c. 417 B.C. 369
B.C.), a Greek mathematician contemporary to Plato, and the classification has been reported by Plato
himself in [34] and by Euclid in the Elements [18] . Since esahedron and octahedron, dodecahedron and
icosaheron are dual couples of platonic solids, they have the same symmetry group. Hence, all possible
symmetry groups of platonic solids are: the tetrahedral group, isomorphic to the alternating group A4,
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with 12 elements, the octrahedral group, isomorphic to the symmetric group S4, with 24 elements, the
icosahedral group, isomorphic to S5, with 60 elements.

As a consequence of the previous two remarks, we can write down the list of all possible finite
subroups G of SU(2) (and of SL(2,C)) up to conjugation.

Cn cyclic n

BD4n binary dihedral 4n , n ≥ 2
BT24 binary tetrahedral 24
BO48 binary octahedral 48
BI120 binary icosahedral 120

4 Quotient singularities

Consider now the quotient C2/G, with G a finite subgroup of SL(2,C). We have that 0 is the unique
point with nontrivial stabilizer. Since the action of G on C2 \ {0} is free, the quotient (C2 \ {0})/G is a
smooth variety. The topological2 space C2/G can be given the structure of an affine algebraic surface
with an isolated singularity in [0].

Remark 4.1. If X is an affine variety with ring of regular functions A(X), then X can be recovered
from A(X) taking the spectrum SpecA(X) of A(X), that is considering all the prime ideals of A(X),
if we want the whole scheme structure, and just by taking the maximal spectrum MaxA(X), if we just
want to recover the closed points, that is, the structure of algebraic variety.

As a consequence of the previous remark, in order to put on the quotient C2/G a structure of
affine variety, it is just necessary to assign the algebra of regular functions A(C2/G). We remark that
the projection C2 - C2/G has to induce by pull-back a morphism between the algebras of regular
functions (as it does for continuous functions)

π∗ : A(C2/G) - A(C2)G , (4.1)

since we want that the pull-back on C2 of any regular function on C2/G has to be automatically G-
invariant. We require that the pull-back (4.1) is actually an isomorphism. Hence, as an algebraic
scheme,

C2/G := SpecA(C2)G ' Spec C[x, y]G .

The reassuring thing is that, topologically, the variety underlying SpecA(C2)G is homeomorphic to the
original topological quotient C2/G. The only thing that remains is the understanding of the invariants
C[x, y]G. This is provided by the following theorem.

Theorem 4.2 (Klein, 1884, [26]). Let G a finite subgroup of SL(2,C). Then the ring of G-
invariants C[x, y]G is generated by three invariants polynomial P,Q,R ∈ C[x, y]G, with a unique relation
S(P,Q,R) = 0.

As a consequence of Klein theorem, we have an epimorphism C[u, v, w] -- C[x, y]G, sending u on
P , v on Q and w on R. The kernel is generated by the principal ideal (S(u, v, w)). Hence passing to
the quotient we get an isomorphism:

C[u, v, w]/(S) ' C[x, y]G .

2Here we take the Zariski topology on C2 and the quotient topology on C2/G.
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As a consequence we get the immersion:

C2/G ' Spec C[x, y]G ' Spec C[u, v, w]/(S) ⊂ - Spec C[u, v, w] ' C3 ,

where C2/G is embedded in C3 as the hypersurface of equation S(u, v, w) = 0. Hence (C2/G, [0]) '
(V (S), 0) is an isolated surface singularity. The quotient singularities of the form C2/G, with G a finite
group of SL(2,C) are called kleinian singularities.

Example 4.3. Let G = Zm, the cyclic group with m elements, acting on C2 in the following way. If ε is
a primitive m-root of unity, then it acts on (x, y) by sending it to (εx, ε−1y). The invariant polynomials
C[x, y]G are generated by P = xm, Q = ym, R = xy, with the relation Rm = PQ. Hence C2/G

can be embedded in C3 as the hypersurface of equation wm = uv, that, with a change of coordinates,
becomes u2 + v2 +wm = 0. We remark that it is one of the rational double point listed at page 4, as a
An-singularity.

Example 4.4. Consider the binary dihedral group BD4n. It is generated by two elements G = 〈α, β〉,

α =

(
ε 0
0 ε̄

)
β =

(
0 1
−1 0

)

where ε is a primitive 2n-root of unity; here αn = β2 = −1, αβ = βα−1. The invariant polynomials are:
P = xn + yn, Q = x2y2, R = xy(x2n− y2n). The relation S is S(P,Q,R) = R2−P 2Q+ 4Pn+1. Hence
C2/G can be embedded in C3 as the hypersurface of equation un− v2w+ 4wn+1 = 0, or, after a change
of variable, of equation, u2 + vw2 + wn+1 = 0. This is also listed on page 4 as a Dn+2 singularity.

It is not a case that the singularities obtained by the previous two examples are rational double
points. In general one has:

Theorem 4.5 (Du Val, 1934, [11, 12, 13]). If G is a finite subgroup of SL(2,C), the kleinian singularity
C2/G is a rational double point. For each finite subgroup of G, up to conjugation, we have exactly one
isomorphism class of singularities. They correspond to each other in the following way.

An x2 + y2 + zn+1 Cn cyclic
Dn x2 + y2z + zn+1 BD4(n−2) binary dihedral
E6 x2 + y3 + z4 BT24 binary tetrahedral
E7 x2 + y3 + yz3 BO48 binary octahedral
E8 x2 + y3 + z5 BI120 binary icosahedral

See also [37, Chapter IV, §4.3].

5 The McKay correspondence

In the eighties [32, 33] John McKay had the idea to relate, in a purely combinatorial but completely
unexpected way, the geometry of a minimal resolution of a kleinian singularity C2/G, and in particular
the intersection graph of the irreducible components of the exceptional divisor, with the irreducible
representations of G. In order to be able to explain such a correspondence, we have to introduce the
extended Dynkin diagrams, obtained by the ADE diagrams, by adding to each of them a point, in the
following way.
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Remark 5.1. The newly added point is motivated by the following. Consider a minimal resolution
µ : Y - X = C2/G of a Kleinian singularity. Let now C0 the strict transform of a general
hyperplane section in X. If C1, . . . , Cn are the irreducible components of the exceptional divisor E,
whose intersection graph is the old Dynkin diagram, the intersection matrix Ã of the set of curves
C0, C1, . . . , Cn corresponds to the extended Dynkin diagram, with C0 corresponding to •.

Consider now the set IrrG = {ρ0, . . . , ρn} of irreducible representations of G. Here ρ0 is the trivial
representation. Associate to Irr G the matrix A = (aij) whose terms aij are the coefficient of C2 ⊗ ρj
in terms of ρi:

C2 ⊗ ρj =
∑
i

aijρi .

McKay proved:

Theorem 5.2 (McKay, 1980). There is a bijection

IrrG �- {C0, . . . , Cn} (5.1)

such that ρi - Ci for all i, and

i) (Ci · Cj) = aij − 2δij (or (Ci · Cj)ij = A− 2id = Ã);

ii) dim ρi = ri, where W =
∑
i riCi = µ−1(0) is the fundamental cycle.

Remark 5.3. The cohomology classes [Ci] of curves {C0, . . . , Cn} form a basis of the cohomology
H∗(Y,Z).

6 Geometric McKay correspondence

A few years after McKay result, Gonzalez-Sprinberg and Verdier [20] succeeded in giving a geometric
construction of McKay correspondence. They actually prove a more general correspondence at the
K-theory level, which induces McKay’s one. We recall that, for a smooth algebraic variety V , the
K-theory K(V ) is the ring generated by locally free sheaves (vector bundles) on V with a relation
E = E1 + E2 whenever E is an extension of E1 and E2, that is, whenever we have a short exact
sequence: 0 - E1

- E - E2
- 0; the multiplication is given by the tensor product. The

use of K-theory allows to to reinterpret the terms of the correspondence. Indeed
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• the set of curves {C0, . . . , Cn} (which actually give information on the second cohomologyH2(Y,Z)
of the minimal resolution) is replaced with the larger K-theory ring K(Y ). It is not difficult to
prove that

K(Y ) ' Z⊕ Pic(Y ) ' Z⊕H2(Y,Z)

via the map that associate to a vector bundle E the couple (rkE, c1(E)) given by its rank rkE ∈ Z
and its first Chern class c1(E) ∈ H2(Y,Z). Hence the ring K(Y ) allows to recover the information
given by the second cohomology H2(Y,Z) and its basis {C0, . . . , Cn}.

• Even if K(C2) does not provide much information, since it is trivial—K(C2) ' Z— the G-
equivariant K-theory of C2, that is ring generated by G-equivariant vector bundles (with analogous
relations given by extensions), gives the needed informations. Indeed one can prove that the map
KG(C2) - R(G), associating to a G-equivariant vector bundle E its 0-fiber E(0), is a ring
isomorphism, with inverse ρ - OC2 ⊗C ρ.

The geometric construction of the correspondece is now built as follows. Consider the reduced fibered
product Z := (Y ×X C2)red. Then one has a (non cartesian) diagram:

Z
p - C2

Y

q

? µ- X = C2/G

π

?

Remark 6.1. One can prove easily that p and q are birational, while it is more difficult (and it is a key
point, as we will see later) to prove that q is flat and finite of degree |G|.

Gonzalez-Sprinberg and Verdier define a morphism of groups λ : R(G) - K(Y ) as a composition:

λ : R(G) ' KG(C2)
p∗- KG(Z)

qG
∗- K(Y ) ,

that is, for any ρ ∈ R(G)
λ(ρ) := qG∗ (p∗OC2 ⊗C ρ) = qG∗ (OZ ⊗C ρ) ;

where qG∗ is the G-invariant push forward, that is, the push-forward followed by the functor of G-fixed
points [−]G. The morphism λ is a K-theoretical integral transform of kernel Z. We have the following
result, stating the geometric realization of the McKay correspondence.

Theorem 6.2 (Gonzalez-Sprinberg, Verdier, 1983, [20]). The morphism λ is an isomorphism of abelian
groups such that:

i) If ρi ∈ IrrG, then c1(λ(ρi)) = [Ci] ∈ H2(Y,Z);

ii) c1(λ(ρi)) · c1(λ(ρj)) = aij for i 6= j;

iii) [W ] =
∑
i(dim ρi)c1(λ(ρi)) ∈ H2(Y,Z).

Remark 6.3. Remark that the composition: Irr G ⊂ - R(G)
λ- K(Y ) - H2(Y,Z) realizes the

classical McKay correspondence (5.1).

Definition 6.4. The sheaves Fρi
:= λ(ρi) = qG∗ (OZ ⊗C ρi), where ρi is an irreducible representation

of G, are called Gonzalez-Sprinberg-Verdier sheaves.
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7 Derived McKay correspondence

The geometric McKay correspondence of Gonzalez-Sprinberg and Verdier is the turning point for more
recent developments. Notably, after the work [20], some of the questions that could be raised were how
to generalize the result in higher dimensions, to general smooth varieties (instead of Cn) and how to
lift it to the derived category level. One of the key difficulties in order to answer these questions is how
to replace Y in all generality: the existence of a crepant resolution of singularities is indeed not at all
guaranteed in dimension 3 or more [35].

The fundamental point is to consider Y as a moduli space, that is a variety parametrizing some kind
of objects on C2. A close look at Gonzalez-Sprinberg construction allows to guess what are the objects
that Y could parametrize. In the diagram (6) the reduce fiber product Z inherits a G-action (through
the factor C2); moreover, the morphism q : Z - Y is flat and finite of degree |G|, as we remarked;
finally q is G-invariant. Consequently Z ⊆ Y ×C2 can be seen as a flat family over Y of G-equivariant
subschemes of C2 of length |G|.

The precise construction was built by Ito and Nakamura in 1996 [24], [23] for a general smooth
quasi-projective variety M , equipped with the action of a finite group G, and goes under the name of
Nakamura G-Hilbert scheme HilbG(M).

Definition 7.1. The G-Hilbert scheme GHilb(M) of G-clusters on M is the scheme representing the
functor:

GHilb(M) : Sch/C - Sets

associating to a scheme S the set

GHilb(M)(S) := {Z ⊂ S ×M,Z closed G-invariant subscheme,

flat and finite over S such that H0(OZs) ' C[G] for all s ∈ S} .

The irreducible component of GHilb(M) containing free G-orbits is called the Nakamura G-Hilbert
scheme, and it is indicated with HilbG(M).

Remark 7.2. The necessity of taking the irreducible component containing free orbits comes from the fact
that, in general, the scheme GHilb(M) is very bad: it is not irreducible and not even equidimensional.
One has a natural morphism µ : HilbG(M) - M/G, called the G-Hilbert-Chow morphism, which
sends a free orbit Gx over the class [x]; it is birational and dominant.

Remark 7.3. Being a the scheme representing the functor GHilb(M), the scheme GHilb(M) is a fine
moduli space of G-clusters, that is, G-invariant subschemes ξ of M of length |G|, such that H0(ξ) is
isomorphic to the regular representation C[G] of G. Hence there is a universal family Z of G-clusters,
Z ⊆ GHilb(M) ×M . The restriction of Z to HilbG(M) provides a flat and finite family of G-clusters
over HilbG(M).

Denote from now one with Y the Nakamura G-Hilbert scheme HilbG(M). We have the diagram:

Z
p - M

Y

q

? µ- M/G = X

π

?

The morphisms p and µ are birational, the morphisms q and π are finite of generic degree |G|, q is flat.
Remark that p is G-equivariant.
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Remark 7.4. An algebraic variety X is said to be Cohen-Macauley if all local rings OX,x, for all points
x ∈ X, are Cohen-Macauley. In this case (see [22]) there exists a dualizing sheaf ω◦X , that allows
Serre duality. The variety X is said to be Gorenstein (or to have Gorenstein singularities) if it is
Cohen-Macauley and the dualizing sheaf is actually a line bundle; in that case ω◦X ' j∗ωXreg , where j
is the open immersion Xreg

⊂ - X. For the quotient M/G of a smooth variety by a finite group to
be Gorenstein, it suffices (and is actually equivalent) that the stabilizer Gx of any points acts on the
tangent space TxM as a subgroup of SL(TxM). Indeed in this case the canonical line bundle ωM is
preserved by G, and hence it is locally trivial as a G-line bundle; therefore it descends to a line bundle
ωM/G on M/G, which coincide with the canonical line bundle on the smooth points of M/G; it will be
isomorphic to the dualizing sheaf ω◦M/G of M/G.

With these premises Bridgeland, King and Reid proved in 2001, under some reasonable hypothesis,
a general derived category version of the geometric McKay correspondence.

Theorem 7.5 (Bridgeland-King-Reid, 2001,[5]). Suppose that M is a smooth quasi-projective variety,
G ⊆ Aut(M) is a finite group of automorphism of M and that:

i) M/G is Gorenstein

ii) dimY ×M/G Y ≤ dimY + 1.

Then Y = HilbG(M) is a crepant resolution of M/G and the Fourier-Mukai functor:

Φ := Rp∗ ◦ q∗ = Db(Y ) - Db
G(M) (7.1)

is an equivalence between the bounded derived category of coherent sheaves on Y and the bounded derived
category of G-equivariant coherent sheaves on M .

Remark 7.6. The derived equivalence (7.1) was first proved by Kapranov and Vasserot [25] in the
classical case of McKay correspondence, M = C2, G ⊆ SL(2,C). The key point in the proof is in any
case the use of Nakamura G-Hilbert scheme.

Remark 7.7. The theorem 7.5 implies that the geometric McKay correspondence holds for three di-
mensional quotient singularities C3/G, with G ⊆ SL(3,C). Already in dimension 4, it can be that
the hypothesis of 7.5 are not verified. Some quotients C4/G do not admit any crepant resolution [35].
In general, the conjectural equivalence Db(Y ) - DG(Cn) if Y is a crepant resolution of Cn/G,
G ⊆ SL(n,C) is called the derived McKay correspondence conjecture.

8 Applications and new directions

8.1 Haiman’s work

In order to study the n! conjecture, Haiman worked out the situation of the action of the symmetric
group on the n-cartesian product of a smooth surface. Let X a smooth quasi-projective surface and
consider the cartesian product Xn. The symmetric variety SnX is the quotient Xn/Sn, where Sn is
the symmetric group. Consider the Hilbert scheme X [n], parametrizing length n-subschemes of X. The
Hilbert-Chow morphism µ : X [n] - SnX, is defined as µ(ξ) =

∑
x∈X length(Oξ,x)x. The following

facts are well known.

i) The symmetric variety SnX has rational singularities (see [6], [3]).
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ii) By a theorem of Fogarty [19], the Hilbert scheme X [n] is smooth of dimension 2n and the Hilbert-
Chow morphism provides a crepant resolution of singularities of SnX.

iii) SnX is Gorenstein, since the stabilizer of any point x is a subgroup of SL(TxXn) and hence the
canonical bundle ωXn is locally trivial as Sn-sheaf.

iv) µ is a semismall resolution. This follows from works of Briançon [4], Ellingsrud-Stromme [17] or
Ellingsrud-Lehn [16] and the stratification of SnX in terms of partitions of n.

We remark that we are in a situation very similar to the classical McKay correspondence. Moreover
almost all the hypothesis of Bridgeland-King-Reid theorem are verified, since SnX is Gorenstein and
the Hilbert-Chow morphism is semismall, and hence dimX [n] ×SnX X [n] ≤ dimX [n] + 1. It remains
to compare the Nakamura Sn-Hilbert scheme Y = HilbSn(Xn) with the Hilbert scheme of points X [n]

and to understand what is the universal Sn-cluster Z. It turns out that the right universal family of
Sn clusters is provided by Haiman’s isospectral Hilbert scheme.

Definition 8.1. Let X a smooth quasi-projective algebraic surface. The isospectral Hilbert scheme Bn

of n points on the surface X is the reduced fibered product

Bn := (X [n] ×SnX Xn)red .

As a consequence we are give a noncartesian diagram:

Bn
p - Xn

X [n]

q

?

µ
- SnX

π

?

with p birational and q finite. Haiman proves the following

Theorem 8.2 (Haiman, 2001, [21]). 1. The isospectral Hilbert scheme is irreducible of dimension
2n and can be identified with the blow-up of the union of the pairwise diagonals ∪i<j∆ij in Xn:
Bn := Bl∪i<j∆ij

Xn.

2. The isospectral Hilbert scheme Bn is normal, Cohen-Macauley and Gorenstein.

Remark 8.3. The Cohen-Macauley property implies the wanted flatness of the morphism q, since a
finite surjective morphism between a Cohen-Macauley variety and a smooth one is necessarily flat ([15],
chapter 18). Consequently the morphism q : Bn - X [n] is flat and finite of degree n!. Moreover,
the isospectral Hilbert scheme Bn inherits a Sn-action, since it is the blow-up of Xn along a closed
Sn-invariant subscheme. This fact implies that Bn is a flat family of Sn-cluster and gives origin to a
map: φ : X [n] - HilbSn(Xn), which allows to compare the two Hilbert schemes. It is now easy to
prove that φ is an isomorphism, that is, the Hilbert scheme X [n] can be identified with the Nakamura
G-Hilbert scheme HilbSn(Xn) and Bn can be identified with the universal Sn-cluster Z.

The important consequence is that the Bridgeland-King-Reid theorem works in the situation of
diagram (8.1):

Corollary 8.4. The Fourier-Mukai functor:

Φ = Rp∗ ◦ q∗ : Db(X [n]) - Db
Sn

(Xn)

is an equivalence of derived categories.
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8.2 Cohomology of representations of tautological bundles

Let X a smooth quasi-projective algebraic surface and let L a line bundle on X. Let Ξ ⊆ X [n] ×X the
universal subscheme. It is flat and finite over X [n] of degree n.

Definition 8.5. We call the tautological bundle over X [n] associated to the line bundle L the rank n
vector bundle:

L[n] := (pX[n])∗p∗XL

where pX[n] and pX are the projections of Ξ over X [n] and over X respectively.

Tautological bundles on Hilbert schemes are very important for many reasons; they play an im-
portant role in the topology of X [n], since their Chern classes are important for understanding the
structure of the cohomology ring H∗(X [n],Q) [28]; moreover in many occasions cohomology computa-
tions on moduli spaces of sheaves on surfaces can be reduced to cohomology computations on Hilbert
schemes of points [9], [10], [29], [31], [30] where the knowledge of the behaviour of tautological bundles
can be necessary.

Notation 8.6. Let ∅ 6= I ⊆ {1, . . . , n} a multi-index; we denote with pI : Xn - XI the projection
onto the factors in I; let iI : X ⊂ - XI the diagonal immersion. We denote with LI the sheaf on Xn

defined by: LI = p∗I(iI)∗L: it is supported on the diagonal ∆I . Denote with C•L the complex:

0 - ⊕ni=1 Li - ⊕|I|=2 LI - . . . - L{1,...,n} - 0 ,

where ⊕|I|=p+1LI is placed in degree p. It is exact in degree 6= 0. The group Sn acts naturally on each
factor CpL = ⊕|I|=p+1LI , making the complex C•L Sn-equivariant.

As a consequence of corollary (8.4), the cohomology of the Hilbert scheme H∗(X [n], F ) with values
in any coherent sheaf F can be obtained as the Sn-equivariant hypercohomology H∗Sn

(X,Φ(F )) on Xn

with values in the image Φ(F ) of F for the Bridgeland-King-Reid equivalence. We proved

Theorem 8.7 (Scala, 2009, [36]). The image of the tautological bundle L[n] via the BKR equivalence
is

Φ(L[n]) ' C•L
in the Sn-equivariant derived category Db

Sn
(Xn). Moreover there is a natural morphism

CL• ⊗L . . .⊗L CL•︸ ︷︷ ︸
l-times

- Φ(L[n]⊗l)

whose mapping cone is acyclic in degree > 0. This means that Rqp∗q∗(L[n]⊗l) = 0 for all q > 0 and
in degree zero the morphism: p∗q∗(L[n])⊗l - p∗q

∗(L[n]⊗l) is surjective, the kernel being the torsion
subsheaf.

As a consequence, the sheaf Φ(L[n]⊗l) ' p∗q
∗(L[n]⊗l) can be identified with the E0,0

∞ term of
the hyperderived spectral sequence Ep,q1 = ⊕i1+···+il=pTor−q(Ci1L , . . . , C

il
L ), associated to l-fold derived

tensor product CL•⊗L . . .⊗LCL•. Working out the term E0,0
∞ of the spectral sequence in all generality is

hard, due to evident technical difficulties. Nonetheless, for applications to computations of equivariant
cohomology, all we really need is the knowledge of the Sn-invariants Φ((E[n])⊗l)Sn of the image
Φ((E[n])⊗l), which can be obtained as the term E0,0

∞ of the spectral sequence Ep,q1 = (Ep,q1 )Sn of
invariants of the original spectral sequence Ep,q1 . In some lucky cases the new spectral sequence Ep,q1

degenerate at level E2, and provides the following results.
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Theorem 8.8 (Scala, 2009, [36]). i) Let a ∈ X and let J the kernel of the morphism:
Sn−1H∗(OX) - Sn−2H∗(OX) induced by the morphism Sn−2X - Sn−1X sending x to
a+ x. The cohomology of the double tensor power L[n] ⊗L[n] of tautological bundles is isomorphic
to

H∗(X [n], L[n] ⊗ L[n]) ' H∗(L⊗
2
)⊗ J ⊕H∗(L)⊗2 ⊗ Sn−2H∗(OX)

as Z-graded modules and S2-representations.

ii) The cohomology of the general exterior power ΛkL[n] is isomorphic to

H∗(X [n],ΛkL[n]) ' ΛkH∗(L)⊗ Sn−kH∗(OX) .

8.3 Conclusions

There are many other aspects of McKay correspondence that we could not touch, in connection with val-
uation theory, string theory, motivic integration, noncommutative geometry, perverse sheaves, Gromov-
Witten invariants and quantum cohomology, Donaldson-Thomas invariants, orbifolds, mirror symmetry,
for example. See [35].

Research in McKay correspondence is still extremely active: we just mention the crepant resolution
conjecture of Chen-Ruan [7], and the derived McKay correspondence conjecture. For the latter it seems
that an encouraging direction is the use of moduli spaces of representations of the McKay quiver. See [8].
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